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Abstract

For VAR models with common explosive root, the OLS estimator of the autoregressive
coefficient matrix is inconsistent (refer to Nielsen, 2009 and Phillips and Magdalinos,
2013). Although Phillips & Magdalinos (2013) proposed using the future observations
as the instrumental variable for removing the endogeneity from VAR models, type I
error occurs when testing for a common explosive root from the distinct explosive roots
before the implementation of IV estimation. Such error creates bias and variance in the
estimate and further causes incorrect inference in the structural analysis such as forecast
error decomposition (FEVD). Hence, we propose using of seemingly unrelated regression
(SUR) estimation for VAR models with explosive roots. Our SUR estimator is consistent
in the case of both distinct explosive roots and common explosive root. We also consider
models with drift in the system for generalization. Simulations show that the SUR estimate
performs better than OLS and IV estimate in the case of both a common explosive root
and distinct explosive roots case. In structural FEVD analysis, simulations show that SUR
yields a different result from OLS and IV. We demonstrate the use of SUR in FEVD for
agricultural commodity markets between 3 July 2010, and 29 January 2011.

I. Introduction

The explosive process is able to capture bubbles in asset prices (Diba and Grossman, 1988).
Hence, it has been used extensively in recent studies of asset price bubbles. The algorithms
provided by Phillips, Wu, and Yu (2011), Phillips, Shi, and Yu (2015a, 2015b) are able

JEL Classification numbers: C12, C13, C58.
*We thank the Editor Anindya Banerjee and two anonymous referees for very helpful comments on earlier
versions of the paper, which improved the quality of the paper significantly. Chen acknowledges support from
National Natural Science Foundation of China (No. 71803138), the Project of Construction and Support for
high-level Innovative Teams of Beijing Municipal Institutions (BPHR20220119), and the Project of Cultivation
for Young Top-notch Talents of Beijing Municipal Institutions (BPHR202203171). Li acknowledges support
from National Natural Science Foundation of China (No.72173052 & No.71803058).

1
© 2023 Oxford University and John Wiley & Sons Ltd.

https://orcid.org/0000-0002-0842-7629


2 Bulletin

to detect bubble behaviour and date-stamp its origination and collapse. These methods
are widely used in the empirical study of asset price bubbles in various markets,
including the stock market (see Basse et al., 2021; Horváth, Li, and Liu, 2021; Li, Wang,
and Zhao, 2021), housing market (See Phillips and Yu, 2013; Greenaway-McGrevy
and Phillips, 2016; Shi et al., 2016), cryptocurrency market (see Cheung, Roca, and
Su, 2015; Corbet, Lucey, and Yarovaya, 2018; Bouri, Shahzad, and Roubaud, 2019),
oil market (see Fantazzini, 2016; Caspi, Katzke, and Gupta, 2018; Gharib, Mefteh-
Wali, and Jabeur, 2021), precious metals market (see Figuerola-Ferretti, Gilbert, and
McCrorie, 2015; Pan, 2018; and Ma and Xiong, 2021), exchange rate market and others
(see Etienne, Irwin, and Garcia, 2014; Kräussl, Lehnert, and Martelin, 2016; Shi, Hurn,
and Phillips, 2020). These models are built in a non-stationary framework. In a stationary
framework, Gouriéroux and Zakoı ¨an (2017) propose a non-causal autoregressive process
with heavy-tailed errors to capture the local explosive behaviour in the financial time
series.

In addition to the study of univariate explosive process, there is increased interest
in multivariate explosive processes. For example, Nielsen (2010) studied a vector
autoregressive model with one unit root process and one explosive process. From
Nielsen (2010), Engsted and Nielsen (2012) proposed a bubble detection mechanism for
asset prices in VAR regression. Phillips and Lee (2015) analyse a VAR system with
mixed explosive roots. This model allows for a local to unit root from the explosive side
and a mildly explosive root. Moreover, they study the Wald test and model selection
criterion for testing for common roots. Magdalinos and Phillips (2009) developed limit
theory for multivariate co-explosive processes. In particular, they consider the cases of
both the distinct explosive roots and common explosive root. Different from the distinct
explosive roots case, the common explosive root case yields the singular matrix for
the sample variance matrix, hence it requires coordinates rotation in developing the
asymptotics. When the regressors are endogenous, Phillips and Lee (2016) consider
self-generated instruments in a method called IVX in the co-explosive system. The IVX
procedure enables a robust Wald test for regressors with different levels of persistence.
The continuous-time counterpart of Magdalinos and Phillips (2009) in discrete time is
developed in Chen, Phillips, and Yu (2017). In a stationary framework, Gourieroux and
Jasiak (2017) consider a VAR(p) model with mixed causal and non-causal components.
They introduce a consistent semi-parametric estimator for model estimation. Cubadda,
Hecq, and Telg (2019) studies co-movement features in the non-causal time-series
models.

VAR models with explosive roots are of particular interest in this paper. VAR
models are the fundamental statistical tool for studying the relationship between multiple
time series over time. It provides a framework for structural analysis such as forecast
error variance decomposition, which are useful tools for analysing the effect of shocks
to the variables in the system. However, for VAR models with a common explosive
root, the OLS estimator of the autoregressive coefficient matrix is inconsistent (see
Nielsen, 2009; Phillips and Magdalinos, 2013). Phillips and Magdalinos (2013) explained
the inconsistency problem in terms of endogeneity induced by co-explosive behaviour.
In particular, co-explosive behaviour results in the singularity of the sample variance
matrix in the limit. To address this asymptotic singularity, they rotate coordinates by
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using orthogonal transformation. The transformation yields a term that is correlated
with the future residuals; hence, the endogeneity arises from the system. Phillips and
Magdalinos (2013) have proposed using future observations as the instrumental variable
(IV) to remove the endogeneity from the VAR model. Although the IV estimator is also
consistent for explosive regressors with distinct explosive roots1, the IV estimator causes
larger variance than OLS estimator in both distinct explosive roots and common explosive
root cases. In addition, we could use IV estimators (Phillips and Magdalinos, 2013) for
VAR models with common explosive roots and use OLS estimators for VAR models
with distinct explosive roots. However, type I error occurs when performing statistical
inference to distinguish the case with distinct explosive roots from that with a common
explosive root. Such error creates bias and variance in the estimate and further causes
incorrect inference in the structural analysis such as forecast error decomposition. We
demonstrate this point in the section on simulation. Hence, new estimators that account
for these issues are crucially needed.

To solve this problem, we propose using an SUR estimator for VAR models with
a common explosive root and with distinct explosive roots. The use of SUR estimators
has a long history in econometric research. Since Zellner (1962) used SUR to study a
multivariate system with correlated errors, there have been many studies employing SUR
in the literature. For example, in the context of cointegration regressions, Mark, Ogaki,
and Sul (2005) propose the dynamic SUR estimation strategy. Moon and Perron (2006)
study SUR estimation for a triangular system with integrated regressors and presents
an empirical study for testing purchasing power parity among the G-7 countries. In the
semiparametric context, Henderson et al. (2015) consider the smooth coefficient of the
SUR model. Smith and Kohn (2000) investigate the SUR in the non-parametric context.
In the spatial modelling context, we have Anselin (1988) and Baltagi and Pirotte (2011).
The recent work by Chen et al. (2017) analyse the multivariate Ornstein–Uhlenbeck
processes with common persistence and shows that SUR estimator performs well in
the bias reduction. Ultimately, the SUR estimator is used for either gaining estimation
efficiency or imposing restrictions on the difference equations in the system; refer to
Moon and Perron (2006).

In VAR models with both a common explosive root and distinct explosive roots, we
show that the SUR estimator is consistent. In addition, our SUR estimator follows a
mixture normal distribution in the limit. Therefore, it can be used for inference. Moreover,
we generalize our analytical study to mildly explosive processes, whose autoregressive
roots moderately deviate from unity (Phillips and Magdalinos, 2007). Such roots are
closely related to the real data and are useful for practical implementation. For moderately
explosive system with distinct explosive roots, our SUR estimator performs well in finite
samples. For a moderately explosive system with a common explosive root, the SUR
estimator is consistent and has better finite sample performance than the OLS and IV
estimator proposed in Magdalinos and Phillips (2009).

The paper is organized as follows. Section II introduces prototypical VAR models
with explosive processes, provides the SUR estimation procedure and presents the

1A brief discussion regarding the limiting distribution of the IV method for explosive regressors with distinct
explosive roots is provided in the Data S1.
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limit distribution of normalized estimators. Section III generalizes the results of the
mildly explosive VAR models. Section IV reports simulations studying the finite-sample
performance of the SUR estimator, in comparison with the OLS estimator and IV estimator
from Phillips and Magdalinos (2013). The application to Chicago Board of Trade (CBOT)
agricultural commodities is conducted in Section V. Section VI concludes the paper.

Throughout this paper, we denote the Euclidean norm of matrix A by ||A|| = (A�A)1/2.
The notation M is used to denote a finite positive constant, := and =: represent definitional
equality, →a.s. denotes almost sure convergence, and ⇒ signifies weak convergence on
the relevant probability space. We assume that n goes to infinity.

II. Seemingly unrelated regression of VAR models with explosive
regressors

We analyse the asymptotic behaviour of the SUR estimator, and find that it is able to
produce consistent estimates for a VAR regression model with both a common explosive
root and distinct explosive roots. For generalization, we also consider the case where there
are the intercept terms in the VAR system.

The model and the inconsistency problem

Following Phillips and Magdalinos (2013), we consider the following model:

Xt = RXt−1 + ut, t = 1, . . . , n, (1)

where Xt is a k-dimensional vector with Xt = [x1,t, . . . , xk,t]�. The initial value is set to
xi,0 = 0 for i = 1, . . . , k for simplicity. The residual ut = [u1,t, . . . , uk,t]� is assumed to
be a martingale difference sequence with respect to Ft = σ(ut, ut−1, . . . ) satisfying
E[utu�

t |Ft−1] = �u with Cov(ui,t, uj,t) = σi,j for i, j = 1, . . . , k. The autoregressive
coefficient matrix is defined as R = diag(ρ1, . . . , ρk).2,3 We consider two cases:

(1) distinct explosive roots: ρi > 1 for i = 1, . . . , k and ρi �= ρj for i, j = 1, . . . , k.
(2) common explosive root: ρi = ρ > 1 for i = 1, . . . , k.
The OLS estimator for model (1) with a common explosive root is inconsistent (Phillips

and Magdalinos, 2013). Take k = 2 for example. First, the standardized sample variance
matrix

∑n
t=1 XtX �

t is asymptotically singular. To treat the singularity in the limit, Phillips
and Magdalinos (2013) use the orthogonal transformation for Xt by H�

n such that

Hn = 1

||Xn||
[

x1,n −x2,n

x2,n x1,n

]

= 1

||Xn||
[
Xn,Rπ

2
Xn

]
,

with Rπ
2

=
[

0 −1
1 0

]

. Let Zt = H�
n Xt. The limiting OLS estimator is

2The diagonal structure of R is found in predictive regression with multiple predictors (Amihud and Hurvich, 2004).
In addition, the variables can be correlated through the covariance matrix of errors �u. We can test for the diagonal
structure of R using the SUR method. Refer to Judge (1982).
3We could generalize our model to consider the inclusion of lagged variables of xi,t−p for some p ≥ 1. Such
generalizations would complicate in the development of asymptotics and hence are left for future work.
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R̂ − R =
(

1

n

n∑

t=1

utZ
�
t−1

)(
1

n

n∑

t=1

ZtZ
�
t

)−1

H�
n .

The transformed variable Zt−1 can be rewritten as Zt−1 =
1

||Xn||

[
X �

n Xt−1

−Rπ
2

Xn
∑n

j=t ρ
−(j−t+1)uj

]

. In the limit of
R π

2
Xn

||Xn|| , there is a term
∑∞

j=1 ρ−juj, that is

correlated with the error term ut. Hence, we have endogeneity in the regressors, which
further causes inconsistency of the OLS estimator in the limit.

To remove the endogeneity from VAR models with common explosive roots, Phillips
and Magdalinos (2013) propose an IV estimator. However, there is a type I error
associated with this pre-test, since we have to test for the common explosive root before
the implementation of IV estimation. Although the IV estimate is consistent for VAR
models with distinct explosive roots, the use of IV estimation produces larger variance
than OLS estimation and further entails incorrect inference in structural analysis such
as forecast error decomposition as reported in our simulation section. Therefore, we
propose using the SUR estimator. The SUR estimator is proved to be consistent in
the cases of both a common explosive root and distinct explosive roots. Moreover, we
demonstrate in the simulation section that the SUR estimator has better finite sample
performance in terms of bias and variance than OLS, IV, IV-OLS method with a pre-test
procedure4.

Seemingly unrelated regression estimate and asymptotics

Let the ith regression model of model (1) be xi,t = ρixi,t−1 + ui,t. Define Xi =
[xi,1, xi,2, . . . , xi,n]�, Xi = [xi,0, xi,1, . . . , xi,n−1]�, and Ui = [ui,1, ui,2, . . . , ui,n]�, which
are an n × 1 vector. Let A = [ρ1, . . . , ρk]�, X = [X �

1 , . . . , X �
k ]�, U = [U1, . . . , Uk]�,

and

X =

⎡

⎢
⎢
⎢
⎣

X1 0n×1 · · · 0n×1

0n×1 X2 · · · 0n×1
...

...
. . .

...

0n×1 0n×1 · · · Xk

⎤

⎥
⎥
⎥
⎦

,

which are of dimension k × 1, nk × 1, nk × 1, and nk × k respectively. Hence, the system
of the SUR is X = X A + U . Furthermore, note that Var(U) = �u ⊗ In is a nk × nk
matrix. The SUR estimator of A for model (1) is defined as follows:

ÂSUR = [X �(�u ⊗ In)
−1X ]−1[X �(�u ⊗ In)

−1X ]. (2)

We start by stating assumptions on the variables and errors that facilitate the
development of the asymptotic theory.

4The implementation of the IV-OLS method with a pre-test procedure is as follows: for a given DGP, we first test
for the common explosive root, and then implement the IV method if the test fails to reject the null of a common
explosive root. If the test rejects the null of a common explosive root, we use OLS instead. The test is from Chen,
Phillips and Yu (2017) and is described in the Data S1.
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Assumption 1. Define the filtration Ft = σ {ut, ut−1, . . . }. Let {ut,Ft} be an
independent martingale difference sequence (mds) with

E[utu
�
t |Ft−1] = �u, and E[||ut||] ≥ M a.s. for all t ≤ n, (3)

for some M > 0 and positive definite matrix �u. Moreover, we have ut ∼ i.i.d.N (0, �u).

Assumption 2. The initial value of the explosive series
{
xi,t
}

is xi,0 = op (1) for
i = 1, . . . , k.

Assumption 1 discusses the property of error terms. In contrast to Phillips and
Magdalinos (2008, 2013), we require normal distribution for the error terms. This
assumption facilitates the proof of joint convergence, which is important in Lemma 2 (v).
Under (3) of Assumption 1, Qi(ρ) = limn→∞

∑n
i=1 ρ−t ui,t√

σi,i
is a.s. not zero. This result is

proved in Lai and Wei (1983), and stated in Phillips and Magdalinos (2013). Assumption 2
presents the asymptotic order of the initial condition.

Define Qi(ρ) = limn→∞
∑n

i=1 ρ−t ui,t√
σi,i

and Q̃i(ρ) = limn→∞
∑n

i=1 ρ−(n−t)−1 ui,t√
σi,i

.

Both Qi(ρ) and Q̃i(ρ) are of central importance in the limits of the SUR estimator.
As shown in the proof of Theorem 1, the sample variance 1

ρ2n
i

∑n
t=1 x2

i,t−1 is approximated

by
(∑n

j=1 ρ
−j
i ui,t

)2
where

∑n
j=1 ρ

−j
i ui,t is dominated by the sum of the first κn shocks, that

is,

1

ρ2n
i

n∑

t=1

x2
i,t−1 = ρ−2n

i

ρ2
i − 1

x2
i,n + Op

(
ρ−2n

i n
)

= σi,i

ρ2
i − 1

[
κn∑

i=1

ρ−t
i

ui,t√
σi,i

+ oa.s.
(
n−1/2)

]2

+ Op

(
ρ−2n

i n
)

⇒ σi,iQi(ρi)
2

ρ2
i − 1

,

The sample covariance 1
ρn

i

∑n
t=1 xi,t−1uj,t is approximated by

(∑n
t=1 ρ

−(n−t)−1
i uj,t

)(∑n
j=1 ρ

−j
i uj,t

)
where

∑n
t=1 ρ

−(n−t)−1
i uj,t is dominated by the

sum of last κn shocks, that is,

1

ρn
i

n∑

t=1

xi,t−1uj,t =
⎛

⎝
n∑

i=κn+1

ρ
−(n−t)−1
i uj,t + oa.s.

(
n−1/2)

⎞

⎠

(
κn∑

s=1

ρ−s
i ui,s + oa.s.

(
n−1/2)

)

+ op (1) ⇒ √
σi,iσj,jQi(ρi)Q̃j(ρi).

Both
∑n

i=κn+1 ρ−t
i

ui,t√
σi,i

and
∑κn

t=1 ρ
−(n−t)−1
i

uj,t√
σj,j

are oa.s.
(
n−1/2

)
as the integer-valued

sequence κn satisfying
∑∞

i=1 nρ
−2κn
i < ∞ and

∑∞
n=1 nρ

−2n+2κn
i as n → ∞. This result

is stated in Lemma 1. Hence, by employing the sample splitting argument as used in
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Magdalinos and Phillips (2009), we have the the limiting theory for ÂSUR − A in the
following Theorem.

Theorem 1. Under Assumptions 1 and 2, the SUR estimator of model (1) has the
following limit as n → ∞:

⎧
⎨

⎩

diag(ρn
1 , . . . , ρn

k )(̂ASUR − A) ⇒ 1
ξ0(ρ)

[ξ1(ρ), . . . , ξk(ρ)]� if ρi �= ρj for i, j = 1, . . . , k

ρn(̂ASUR − A) ⇒ (ρ2 − 1)
(

Q̃1(ρ)

Q1(ρ)
, . . . , Q̃k(ρ)

Qk(ρ)

)�
if ρi = ρ > 1 for i = 1, . . . , k

,

where ρ = [ρ1, . . . , ρk]�, ξi(ρ) :=∑k
j=1

√
σj,j
σi,i

1
Qi(ρi)

∣
∣
∣
∣
∣
∣
∣
∣
∣

⎡

⎢
⎢
⎢
⎣

σ 1,1

ρ2
1 −1

· · · σ 1,j̃xj(ρ1) · · · σ 1,k

ρ1ρk−1

.

.

.
.
.
.

.

.

.

σ k,1

ρkρ1−1 · · · σ k,j̃xj(ρk) · · · σ k,k

ρ2
k −1

⎤

⎥
⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣
∣

for i = 1, . . . , k, and ξ0(ρ) :=

∣
∣
∣
∣
∣
∣
∣
∣
∣

⎡

⎢
⎢
⎢
⎣

σ 1,1

ρ2
1−1

· · · σ 1,k

ρ1ρk−1

...
...

σ k,1

ρkρ1−1 · · · σ k,k

ρ2
k −1

⎤

⎥
⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣
∣

with σ i,j := [�−1
u ]i,j.

Remark 1. Theorem 1 implies that ρn
i (ρ̂i,SUR − ρi) ⇒ ξi(ρ)

ξ0(ρ)
in i = 1, . . . , k for the case

of distinct explosive roots and ρn
i (ρ̂i,SUR − ρi) ⇒ (ρ2 − 1)

Q̃i(ρ)

Qi(ρ)
in the case of a common

explosive root. It indicates that the SUR estimator is consistent since ρ̂i,SUR = ρi + op(1)

in the cases of both distinct explosive roots and a common explosive root. Unlike the
SUR estimator, the OLS estimator is inconsistent in the case of a common explosive root
from Phillips and Magdalinos (2013) such that ρ̂i,OLS = ρi + Op(1). Such inconsistency
is explained by the endogeneity induced by the coordinate rotation when deriving the
asymptotics for ρ̂i,OLS.

Remark 2. For example, in the case of a bivariate common explosive root, different
from the OLS estimator, we do not use coordinate rotation to derive the sample moments
limits, since the sample variance limit for the SUR estimator is invertible. In particular,
the proof of Theorem 1 shows that the sample variance of the SUR estimator in the limit
is

ρ−n

[
σ 1,1X �

1 X1 σ 1,2X �
1 X2

σ 2,1X �
2 X1 σ 2,2X �

2 X2

]

→a.s.

[
σ 1,1 σ1,1

ρ2−1
Q1(ρ)2

√
σ 1,2σ 2,1

√
σ1,1σ2,2

ρ2−1
Q1(ρ)Q2(ρ)√

σ 1,2σ 2,1
√

σ1,1σ2,2

ρ2−1
Q1(ρ)Q2(ρ) σ 2,2 σ2,2

ρ2−1
Q2(ρ)2

]

.

(4)

where �−1
u =

[
σ 1,1 σ 1,2

σ 2,1 σ 2,2

]

. In contrast, the sample covariance limit (5) for the

OLS estimator is singular since

ρ−n
[

X �
1 X1 X �

1 X2

X �
2 X1 X �

2 X2

]

→a.s.

[ σ1,1

ρ2−1
Q1(ρ)2

√
σ1,1σ2,2

ρ2−1
Q1(ρ)Q2(ρ)

√
σ1,1σ2,2

ρ2−1
Q1(ρ)Q2(ρ)

σ2,2

ρ2−1
Q2(ρ)2

]

. (5)

© 2023 Oxford University and John Wiley & Sons Ltd.
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Clearly, by incorporating the information from the error covariance, the sample covariance
limit (4) is invertible.

Remark 3. The SUR estimator is not feasible since �u is unknown. Hence, we
replace it with its OLS estimator in application. This replacement yields good finite
sample performance, which is presented in the simulation section.

For the purpose of generalization, we also consider the VAR system with intercepts.
Following Phillips, Shi, and Yu (2014), we introduce the localizing drift term in the
system. In particular, the data are generated as follows

Xt = μ + RXt−1 + ut, (6)

where μ = [μ1, . . . , μk]� with μi = μ̃in−η for η ≥ 0. The drift term depends on the
sample size, since the constant term is sample size or frequency dependent for financial
time series, see the discussion in Phillips et al. (2014).

The system of the SUR for model (6) is written as X = X A + U , where X is now
defined as

X =

⎡

⎢
⎢
⎢
⎣

1n×1 X1 0n×1 0n×1 · · · 0n×1 0n×1

0n×1 0n×1 1n×1 X2 · · · 0n×1 0n×1
...

...
...

...
. . .

...
...

0n×1 0n×1 0n×1 0n×1 · · · 1n×1 Xk

⎤

⎥
⎥
⎥
⎦

.

and A = [μ1, ρ1, . . . , μk , ρk]�. The SUR estimator of A for model (6) is

ÂSUR = [X �(�u ⊗ In)
−1X ]−1[X �(�u ⊗ In)

−1X ]. (7)

We present the limiting behaviour of SUR estimator ÂSUR in the following theorem.

Corollary 1. The SUR estimator for model (6) as n → ∞ is
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

diag
(

n
1
2 , ρn

1 , n
1
2 , ρn

2 , . . . , n
1
2 , ρn

k

)(
ÂSUR − A

)

⇒
[
B1 (1) , ξ1(ρ)

ξ0(ρ)
, . . . , Bp (1) , ξk (ρ)

ξ0(ρ)

]�
2k×1

if ρi �= ρj for i, j = 1, . . . , k

diag
(

n
1
2 , ρn, n

1
2 , ρn, . . . , n

1
2 , ρn

)(
ÂSUR − A

)

⇒
[

B1 (1) , (ρ2 − 1)
Q̃1(ρ)

Q1(ρ)
, . . . , Bp (1) , (ρ2 − 1)

Q̃p(ρ)

Qp(ρ)

]�

2k×1

if ρi = ρ > 1 for i = 1, . . . , k

,

where Bi(1), for i = 1, . . . , k are Brownian motions with variance σi,i. ξ0(ρ) and ξi(ρ) are
the same as in Theorem 1.

Remark 4. The asymptotics of ρ̂i,SUR are the same as those in Theorem 1. This is
because the magnitude of the localizing drift term is Op(n−η). We assume that the drift
term is asymptotically negligible, hence it will not be a dominant component in the limit.

Figure 1 presents the finite-sample distribution of the SUR estimator and the OLS
estimator for model (6) with distinct explosive roots. Apparently, the OLS estimator

© 2023 Oxford University and John Wiley & Sons Ltd.
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Figure 1. Finite-sample distribution of SUR and OLS estimators for DGP (6) with distinct explosive roots,
where ρ1 = 1.005, ρ2 = 1.01, and n = 50,100, 200. The configuration of the remaining parameters is the
same as that in Table 1 [Colour figure can be viewed at wileyonlinelibrary.com]

clearly produces larger variance than the SUR estimator as shown in Table 1. As n
increases from 50 to 200, the variance of both OLS and SUR estimators are decreasing.
Figure 2 presents finite-sample distribution of SUR estimator and the OLS estimator for
model (6) with a common explosive root. Similar to the distinct explosive root case in 1,
the OLS estimate produces larger bias and variance than the SUR estimate in Figure 2.
In particular, since the OLS estimator of ρ1 is left skewed and the OLS estimator of ρ2

is right skewed, the OLS estimator of ρ1 is upward biased and the OLS estimator of ρ2

is downward biased as shown in Table 1. In the Data S1, Figures C1 and C2 present the
finite-sample distribution of the intercept estimate for the case of distinct explosive roots
and a common explosive root respectively. The densities of the intercept SUR estimate are
symmetric, which indicates that the intercept estimates are unbiased. The OLS estimate
produces larger variance than the SUR estimate in the cases of both distinct explosive
roots and a common explosive root.

III. Seemingly unrelated regression of VAR with multiple mildly explosive
regressors

The OLS inconsistency problem also occurs in VAR models with common mildly
explosive regressors. The mildly explosive process is an important tool in characterizing

© 2023 Oxford University and John Wiley & Sons Ltd.
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Figure 2. Finite-sample distribution of SUR and OLS estimators for DGP (6) with common explosive roots,
where ρ1 = ρ2 = 1.01, and n = 50,100, 200. The configuration of the remaining parameters is the same as
that in Table 1 [Colour figure can be viewed at wileyonlinelibrary.com]

asset price bubbles and plays a fundamental role in the bubble detection literature (see
Phillips et al., 2011, 2015a, 2015b; Shi and Phillips, 2021). In this section, we extend the
results in Section II to VAR systems with mildly explosive regressors.

Replacing R with Rn in DGP (1), we further assume the data are generated from the
following model:

Xt = RnXt−1 + ut. (8)

In particular, Rn = diag (ρ1n, . . . , ρkn), and the autoregressive root ρin is defined as
ρin = 1 + ci

nα with α ∈ (0, 1). The root is moderately deviated from unity and hence
covered a larger neighborhood around unity than local-to-unity processes.

We start by stating assumptions on the variables and errors which assist in the
development of the asymptotic theory.

Assumption 3. Define the filtration Ft = σ {ut, ut−1, . . . }. Let {ut,Ft} be independent
and identically distributed random variables with

E[ut|Ft−1] = 0, and E[utu
�
t |Ft−1] = �u < ∞, for all t ≤ n.

© 2023 Oxford University and John Wiley & Sons Ltd.
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Assumption 4. The initial value of the explosive series
{
xi,t
}

is xi,0 = op (1) for
i = 1, . . . , k.

Assumption 3 provides the conditions for the error terms. In particular, there is
no requirement for the distribution condition. This assumption is the same as Phillips
and Magdalinos (2007). We require op (1) as an initial condition in Assumption 4.
However, we can relax the initial condition to be op

(
nα/2

)
as stated in (Phillips and

Magdalinos, 2007).
Define Yi (ci) ∼ N (0, 1) and Ỹj (ci) ∼ N (0, 1). As Qi(ρ) and Q̃i(ρ) are of central

importance in the limits of the SUR estimator for VAR models with explosive regressors,
both Yi (ci) and Ỹj (ci) play an important role in the asympototics for VAR models with
mildly explosive regressors. We show in the proof of Theorem 2 that the sample variance

1
ρ2n

i

∑n
t=1 x2

i,t−1 is approximated by
(∑n

t=1 ρ
−j
in ui,t

)2
that is,

1

n2αρ2n
in

n∑

t=1

x2
i,t−1 = 1

2ci

(
1√
nα

n∑

t=1

ρ
−j
in ui,t

)2

+ op (1) ⇒ σi,i

4c2
i

[Yi (ci)]2.

The sample covariance 1
ρn

i

∑n
t=1 xi,t−1uj,t is approximated by

(∑n
t=1 ρ

−(n−t)−1
i uj,t

)(∑n
s=1 ρ−s

i ui,s
)

where

1

nαρn
in

n∑

t=1

xi,t−1uj,t =
(

n∑

t=1

ρ
−(n−t)−1
i uj,t

)(
n∑

s=1

ρ−s
i ui,s

)

+ op (1)

⇒
√

σi,iσj,j

2ci
Ỹj (ci) Yi (ci) .

Unlike VAR models with explosive regressors, we do not use the sample splitting
argument in the proof, as Yi (ci) and Ỹj (ci) are asymptotically independent since

E

[(
1

nα/2

n∑

t=1

ρ−t
in ui,t

)(
1

nα/2

n∑

t=1

ρ
−(n−t)−1
in uj,t

)]

= ρ−n+1
n

nα

n∑

j=1

E
[
ui,tuj,t

]→ 0.

We present the limit result of the SUR estimator for the DGP (8).

Theorem 2. Under Assumptions 1 and 2, the SUR estimator for model (8) has the
following limit as n → ∞:

⎧
⎨

⎩

diag(nαρn
1n, . . . , nαρn

kn)(̂ASUR − A) ⇒ 1
ζ0(c) [ζ1(c), . . . , ζk(c)]� if ci �= cj for i, j = 1, . . . , k

nαρn
n (̂ASUR − A) ⇒ 2c

(
Ỹ1(c)
Y1(c) , . . . , Ỹk (c)

Yk (c)

)�
if ci = c for i = 1, . . . , k

,

© 2023 Oxford University and John Wiley & Sons Ltd.
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where c = [c1, . . . , ck]�, ζi(c) :=∑k
j=1

√
σj,j
σi,i

1
Yi(ci)

∣
∣
∣
∣
∣
∣
∣
∣
∣

⎡

⎢
⎢
⎢
⎣

σ 1,1

c1+c1
· · · σ 1,j

c1
Ỹj(ci) · · · σ 1,k

c1+ck
.
.
.

.

.

.
.
.
.

σ k,1

ck+c1
· · · σ k,j

ck
Ỹj(ck) · · · σ k,k

ck+ck

⎤

⎥
⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣
∣

,

and ζ0(c) :=

∣
∣
∣
∣
∣
∣
∣
∣

⎡

⎢
⎢
⎣

σ 1,1

c1+c2
· · · σ 1,k

c1+ck
...

. . .
...

σ k,1

ck+c1
· · · σ k,k

ck+ck

⎤

⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣

for i = 1, . . . , k.

Remark 5. The limiting distribution of nαρn
in

(
ρ̂in,SUR − ρin

)
is asymptotically Cauchy.

There is no Gaussian assumption for the error terms. This is different from the explosive
regressor case in the previous section, where the limiting distribution depends on the error
distributions. Hence, the invariance principle (refer to Phillips and Magdalinos, 2007)
applies in our mildly explosive VAR models.

Remark 6. Unlike the result for explosive VAR models (1) in previous section,
where the converge rate is ρn

i for ρ̂i,SUR, the convergence rate for ρ̂in,SUR is nαρn
in for

mildly explosive VAR models (8). The differences in the convergence rate depend on the
configuration of the autoregressive coefficient.

Remark 7. Moreover, SUR estimator ρ̂in,SUR is asymptotically mixture normal, and
its associated Wald test is chi-squared distributed. Hence, we can use Wald test statistics
for inference in the applied work.

Next, we include the intercept term in the multivariate system. The model is generated
as follows

Xt = μ + RnXt−1 + ut, (9)

where μ = [μ1, . . . , μk]�. Following Phillips et al. (2014), we set μi = μ̃in−η for η ≥ 0.
The associated asymptotics are as follows:

Corollary 2. The SUR estimator for model (9 ) as n → ∞ is

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

diag
(

n
1
2 , nαρn

1n, n
1
2 , nαρn

2n, . . . , n
1
2 , nαρn

kn

)(
ÂSUR − A

)

⇒
[
B1 (1) , ζ1(c)ζ0(c), B2 (1) , ζ2(c)

ζ0(c) , . . . , Bk (1) , ζk (c)
ζ0(c)

]�
2k×1

if ci �= cj for i, j = 1, . . . , k

nαρn
n (̂ASUR − A) ⇒ 2c

(
Ỹ1(c)
Y1(c) , . . . , Ỹk (c)

Yk (c)

)�
if ci = c for i = 1, . . . , k

,

where Bi(1), for i = 1, . . . , k are defined in the Appendix. ζ0(c) and ζi(c) are
the same as in Theorem 2.

Remark 8. Similar to the explosive VAR models (1), the SUR estimator ρ̂in,SUR
with drift shares the same limit as that without drift. This is because the drift term is
asymptotically negligible in the system.

We compare the finite-sample distribution of the proposed SUR estimator and the
OLS estimator. Figure 3 presents the finite-sample distribution of SUR estimator and
the OLS estimator for DGP (9) with distinct explosive roots. Similar to the explosive
VAR case in previous section, the OLS estimator produces larger variance than the SUR

© 2023 Oxford University and John Wiley & Sons Ltd.
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Figure 3. Finite-sample distribution of SUR and OLS estimators for DGP (9) with distinct explosive roots,
where c1 = 1, c2 = 2, α = 0.95, and n = 50,100, 200. The configuration of the remaining parameters is the
same as that in Table 2 [Colour figure can be viewed at wileyonlinelibrary.com]

estimator as shown in Table 2. As n increases from 50 to 200, the variance of the both
OLS and SUR estimator increase. Figure 4 presents the finite sample distribution of SUR
estimator and the OLS estimator for model (6) with a common explosive root. Similar
to the VAR with an explosive regressor case in the previous Section, the OLS estimator
produces larger bias and variance than the SUR estimator as shown in Figure 4. Since the
OLS estimate of ρ1 is left skewed and the OLS estimate of ρ2 is right skewed, the OLS
estimate of ρ1 has upward bias and the OLS estimate of ρ2 has downward bias, as shown
in Table 2. In Data S1, Figures C3 and C4 present the finite-sample distribution of the
intercept estimate for the cases of distinct explosive roots and common explosive root,
respectively. The densities of the intercept estimate are symmetric, which indicates that
the intercept estimates are unbiased. The OLS estimator produces larger variance than the
SUR estimator in the cases of both distinct explosive roots case and a common explosive
root.

IV. Simulations

First we compare the finite-sample performance between OLS estimator, SUR estimator,
and IV estimator5 in terms of 100 × bias, 100 × variance and 100 × mean squared
error, for various values of n = 50,100, 200. In particular, the IV estimator from

5The IV-OLS estimator with a pre-test procedure is considered in Table 1. Although it improves the finite-sample
performance of OLS and IV to some extent, it is not considered in other tables and figures since the improvement is
insignificant.

© 2023 Oxford University and John Wiley & Sons Ltd.
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Figure 4. Finite-sample distribution of SUR and OLS estimators for DGP (9) with common explosive roots,
where c1 = c2 = 1, α = 0.95, n = 50,100, 200. The configuration of the remaining parameters is the same as
that in Table 2 [Colour figure can be viewed at wileyonlinelibrary.com]

Phillips and Magdalinos (2013) is defined as R̂IV = (
∑n−p

t=1 XtX �
t+p)(

∑n−p
t=1 Xt−1X �

t+p)
−1,

for p ∈ {0, 1, 2, . . . }. In the section, we set p = 1 for the IV estimator. Since the variance-
covariance matrix �u is not available when using SUR estimation, we propose using the
feasible SUR estimator for the implementation by the following procedures.

Step 1:Estimate �u by OLS instead. Then, compute the estimated error terms ut.
Step 2: Calculate the SUR estimate of the autoregressive coefficient matrix using the

estimate of �u from step 1. Then, compute the estimated error terms ut using the SUR
estimate.

Step 3: Repeat steps 1 and 2 until the SUR estimate of R converges.
First, we consider DGP (6) for k = 2. We choose ρ1 = 1.005 and ρ2 = 1.01 for

n = 50,100, 200. In addition, we set �u =
[

0.0012 0.0012
0.0012 0.0015

]

and μ = [μ1, μ2]� =
[
1 × n−1/2, 0.8 × n−1/2

]�
. The number of replications is 10,000. The parameters are

calibrated to our CBOT agricultural commodity application. In particular, we calibrate the
xt process to the sample period between 3 July 2010 and 29 January 2011. The selection
of the sample period is guided by the literature as stated in the empirical section. We
estimate the autoregressive coefficient for each of the commodity price series, and forms
the autoregressive coefficient interval. The chosen ρ1 = 1.005, and ρ2 = 1.01 lie in the
interval. The initial values of the explosive processes are set to x0 = [0, 0]�.

The results are reported in Table 1. For the case of distinct explosive roots case, first,
as the sample size increases, all autoregressive coefficient estimates have smaller bias
and variance. Second, among these estimates, the SUR estimate has the smallest bias and
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variance. For the case of common explosive root, first, the OLS estimate has upward bias
for ρ1 and downward bias for ρ2. In contrast, the IV estimate has downward bias for ρ1 and
upward bias for ρ2. Second, the SUR estimator is able to deliver the best finite-sample
performance in terms of bias and variance. Third, both bias and variance decrease as the
sample size increases for all four estimates.

Second, we consider the mildly explosive process of xt. The data are generated from
model (9) for k = 2 with c1 = 1, c2 = 2, α = 0.95 for the case of distinct explosive roots
case and c = 1, α = 0.95 for the case of a common explosive root. The configuration of
the remaining parameters is the same as that in Table 1. The results are reported in Table 2.
For the case of the distinct explosive roots, SUR estimator has the smallest variance and
bias. For the case of a common explosive root, Table 2 shows that the SUR estimator
is consistent and outperforms the other estimators. Similar to the case of an explosive
regressor, for ρ2, the OLS estimate is inconsistent and has downward bias with a larger
variance, and the IV estimate is upward biased.

We conclude that in the cases of both distinct explosive roots and a common explosive
root, the SUR estimator delivers the estimate with a smaller bias, variance and mean
squared error than the OLS and IV estimators in nearly all cases.

Next, we perform a structural analysis of the forecast error variance decomposition
for our explosive VAR models. The forecast error variance decomposition (FEVD) is
intended to decompose the variance of the forecast error and to compute the contributions
of specific exogenous shocks. In particular, FEVD computes the percentage of variation in
each xt at time t + k that is due to shocks in each xt (including itself) at time t. In Figure 5,
we compare the performance of the forecast error variance decomposition between the
OLS estimator, SUR estimator and IV estimator in the case of a common explosive root.
Figure 5 reports FEVD at 20-month horizons ahead. The data generating process is the
same as in Table 1. On the one hand, when using the SUR or IV estimator, we can attribute
most of the forecast error variance of variable 1 to a shock to variable 1. For the OLS
estimator, after several periods, the contribution of variable 1 to variable 1 decreases and
the contribution of variable 2 to variable 1 increases. On the other hand, for the OLS and
SUR estimators, we can attribute most of the forecast error variance of variable 2 to a
shock to variable 2. While for the IV estimator, the contribution of shock 1 to variable 2
is increasing while the contribution of shock 2 to variable 2 is decreasing over the sample
period.

V. Empirical application

Agricultural commodities are a popular investment for optimizing portfolio return and
diversifying portfolio risk. Except for market fundamentals (supply, demand shifters),
these commodity prices tend to respond to financial and economic events and hence
move together in the market (Etienne et al., 2014; Chavas and Li, 2020; Li and
Chavas, 2023). Moreover, the financialization of commodity markets has increased the
integration in agricultural commodity markets and across different commodity markets
(Tang and Xiong, 2012). Therefore, it is interesting to explore and analyse the impact of
agricultural commodity shocks in the market. There are some studies applying forecast
error variance decomposition to agricultural commodities and other markets (Yang,
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Figure 5. FEVD performance by using different estimators [Colour figure can be viewed at
wileyonlinelibrary.com]

Balyeat, and Leatham, 2005; Wang and McPhail, 2014; Antonakakis and Kizys, 2015;
Luo and Ji, 2018; Balli et al., 2019; Xiao et al., 2020). Since impacts may be intense
during financial bubbles, in this empirical section, we investigate the interrelationships
among the price shocks and study the variation between the essential CBOT agricultural
commodities using FEVD during such period.

As we demonstrated in the simulation section, the use of an OLS estimator in FEVD
yields a possibly incorrect result when computing the decomposition of forecast error
variance. In this section, we demonstrate the difference in FEVD when using different
estimators. We apply OLS, SUR and IV estimators to commodity price data using the
closing prices of soybeans, rice, wheat, corn and sugar futures contracts. Weekly data for
these prices were downloaded from the Wind database.

The sample period is between 3 July 2010, and 29 January 2011. The selection
of sample period is guided by Li et al. (2017a), who studied the relationship between
commodity price bubbles and macroeconomic factors. Etienne et al. (2014) and Li, Li, and
Chavas (2017b) found that bubbles primarily occurred over the period 2010–11. Hence,
our focus is on the period between 3 July 2010, and 29 January 2011. Figure 6 plots
the closing prices of the selected commodities. We observe price run-ups in the sample
period. In addition, we use the method in Chen et al. (2017) to explore the presence of
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http://wileyonlinelibrary.com


Unrelated regression estimation for VAR models 19

100

150

200

250

300

350

400

450

500

550

600

soybean
rice
wheat
corn
sugar

July
2010

August
2010

September 
2010

October
2010

November
2010

December
2010

January
2010

Febuary
2010

Figure 6. Closing prices of the CBOT agricultural commodity futures between July 3, 2010 and January 29,
2011 [Colour figure can be viewed at wileyonlinelibrary.com]

explosive behaviour in the data. In particular, we find that soybeans, rice, wheat, corn,
and sugar exhibit explosive behaviour6, hence, we further study the structural behaviour
of these data.

Figure 7 reports the results of FEVD using the OLS, SUR and IV estimators. Consider
soybean prices for example. When using the OLS estimator, the forecast error variance is
mainly explained by the soybean price shock itself in the first few months. In particular,
at the horizon of 1 month, the variance is almost entirely explained by the price itself. The
contribution of soybean price shocks to its forecast error variance declines of the period
studied, while the contribution of wheat prices increases. Rice, corn, and sugar contribute
very little to soybean prices, with maximum contribution less than 10%. When using the
SUR estimator, the variance of soybean oil is almost entirely explained by its own shock.
The rice shock, wheat shock, corn shock and sugar shock contribute very little to the
soybean price. When using the IV estimator, at the horizon of 1 month, the result is the
same as that using the SUR estimator. However, at horizons other than 1 month, most of
the variance is explained by corn and sugar. The wheat price contributes little to soybean
price variance.

For rice, when using the OLS estimator, at the 1-month horizon, the variance is almost
entirely explained by the rice shock itself. Thereafter, the contribution of corn and sugar
price shocks increases, and the contribution of rice shocks declines to approximately 30%
during the period of study. The contribution of soybeans and wheat is approximately zero
for all of the considered period. When using the SUR estimator for rice, over 90% of the
variance is explained by its own shock; 10% of the variance is explained by soybeans.
The wheat, corn and sugar shocks contribute very little to the rice price. When using the
IV estimator for rice, at a 1-month horizon, the result is the same as when using the OLS

6The results of the analysis are reported in the Appendix.
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Figure 7. FEVD for price of soybeans, rice, wheat, corn, and sugar in CBOT agricultural commodity market.
The top panels are estimation using OLS, the middle using SUR, and the bottom panels are using IV [Colour
figure can be viewed at wileyonlinelibrary.com]

and SUR estimators. However, at horizons other than 1 month, most of the variance is
explained by corn and sugar prices, approximately 80%. Rice contributes approximately
20% to its own variance. Soybeans and wheat contribute little to rice’s variance.

Regarding the OLS estimates for wheat, the variance is almost entirely explained by
the wheat shock itself and the rice shock. Soybeans and sugar contribute very little to
sugar’s variance. Over the next few periods considered, the contribution of the wheat
price itself decreases while that of corn increases. When applying the SUR estimator to
wheat, over all the periods considered, the results are similar to the first month of the
OLS estimates. For sugar when using the IV estimator, at a horizon of 1 month, the result
is the same as that using the OLS and SUR estimators. However, at horizons other than
1 month, most of the variance is explained by corn and sugar, approximately 80%. Rice
accounts for approximately 15% of wheat’s variance. Soybeans and sugar contribute little
to wheat’s variance.

Regarding the OLS estimates for corn, at a horizon of first month, 60% of the variance
is explained by the corn shock itself; 30% of the variance is explained by soybean and rice
shocks. The wheat shock contribute little to corn’s variance. Thereafter, the contribution
of corn decreases, and that of wheat increases. Regarding the SUR estimates for corn, over
all the periods considered, the result is similar to the first month of the OLS estimates.
When using the IV estimator for corn, at a horizon of 1 month, the result is the same as
that using the OLS and SUR estimators. However, at horizons other than 1 month, most
of the variance is explained by corn and sugar. Rice accounts for approximately 15% of
corn’s variance. Soybeans and wheat contribute little to corn’s variance.

Regarding the OLS estimates for sugar, at a one-month horizon, 80% of the variance
is explained by sugar and corn; 20% of the variance is explained by the rice shock. The
soybean shock contributes little to corn’s variance. Thereafter, the contribution of sugar
decreases and that of rice increases. When applying the SUR and IV estimators to sugar,
over all periods considered, the result is similar to the first month of the OLS estimates.
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Ultimately, there is a significant difference in the FEVD when using different estimators
for explosive VAR models. Hence, we suggest the use of the SUR estimator when the
focus is on bubble periods.

VI. Conclusion

The VAR models with explosive regressors is of particular interest in studying the
structural relationship during the bubble period. When the VAR models with common
explosive root is estimated with OLS, the inconsistency problem occurs. The OLS
estimator will produce a confusing result and it will further produce a misleading
inferential result when analyzing the systems with explosive regressors. Phillips and
Magdalinos (2013) discuss and explains the problem, and further propose removing the
inconsistency from such system by using the IV estimator. However, we have to test
for the common explosive root before applying the IV estimator. In order to avoid the
type I error before implementing the IV estimator, we propose a SUR estimator for the
VAR models with distinct explosive roots and common explosive root. We show that
the SUR estimator is able to deliver the consistent estimator with good finite sample
performance. The asymptotic result is provided for both the explosive regressors and the
mildly explosive regressors, and for the system with or without intercept terms. Moreover,
we demonstrate in simulation that our SUR estimator gives a different result in FEVD,
comparing to OLS and IV estimator.

As to the future research work, we expect to see the application of SUR in financial
connectedness, particularly in the studying of financial connectedness in the bubble
period. Financial connectedness measures the shares of forecast error variation in
various locations, due to shocks arising elsewhere (Diebold and Yilmaz, 2009). In
the Diebold–Yilmaz framework, we apply the FEVD in studying the connectedness
between returns, defaults, contracts, and systems, see Diebold and Yilmaz (2009, 2012,
2014) and Demirer et al. (2018). The financial connectedness plays an important role in
understanding the financial risk management, hence, we expect to see the performance of
our SUR estimator in measuring the financial connectedness.

Appendix

Useful lemmas
In this section, we introduce some basic limit results, which assist in deriving the
limit distribution in this paper. These asymptotics are direct extensions of Phillips and
Magdalinos (2007, 2008, 2013) and Magdalinos and Phillips (2009).

Lemma 1. Assuming the integer-valued sequence κn satisfying
∑∞

i=1 nρ
−2κn
i < ∞

and
∑∞

n=1 nρ
−2n+2κn
i < ∞ as n → ∞, under Assumptions 1 and 2, given the following

data generating process for i = 1, . . . , k as xi,t = ρixi,t−1 + ui,t, ρi > 1,

(i) Let Qn(ρ) = [Q1,n(ρ1), . . . , Qk,n(ρk)]� with Qi,n =∑n
i=1 ρ−t

i
ui,t√
σi,i

for i =
1, . . . , k. We have Qn(ρ) ⇒ Q(ρ) = [Q1(ρ1), . . . , Qk(ρk)]�, with Qi(ρi) =∑∞

i=1 ρ−t
i

ui,t√
σi,i

. The subscript i of xi(·) corresponds to ui,t.
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(ii) Let Q̃n(ρ) = [Q̃1,n(ρ1), . . . , Q̃k,n(ρk)]� with Q̃j,n(ρi) =∑n
t=1 ρ

−(n−t)−1
i

uj,t√
σj,j

for i, j = 1, . . . , k. We have Q̃n(ρ) ⇒ Q̃(ρ) = [Q̃1(ρ1), . . . , Q̃k(ρk)]�, with
Q̃j(ρi) =∑∞

t=1 ρ
−(n−t)−1
i

uj,t√
σj,j

. The subscript j of Q̃j(·) corresponds to uj,t.

(iii) Q(ρ) and Q̃(ρ) are asymptotically independent.

Lemma 2. Under Assumptions 1 and 2, given the following data generating process
for i = 1, . . . , k as xi,t = ρixi,t−1 + ui,t, ρi > 1, we have,

(i)
1

ρn
i

n∑

t=1

xi,t−1 ⇒
√

σi,iQi(ρi)

ρi − 1
, (A1)

(ii)

1

ρn
i

n∑

t=1

xi,t−1uj,t ⇒ √
σi,iσj,jQi(ρi)Q̃j(ρi), (A2)

(iii)
1

ρ2n
i

n∑

t=1

x2
i,t−1 ⇒ σi,iQi(ρi)

2

ρ2
i − 1

, (A3)

(iv)

1

ρn
i ρn

j

n∑

t=1

xi,t−1xj,t−1 ⇒
√

σi,iσj,j

ρiρj − 1
Qi(ρi)Qj(ρj), (A4)

(v) Consider the martingale array Un (s) =
[

1
ρn

1

∑n
t=1 x1,t−1uj,t, . . . , 1

ρn
p

∑n
t=1 xp,t−1uj,t

]
.

Then the following joint convergence applies:

[
Un (s)

1√
n

∑ns�
t=1 ut

]

⇒
[

U (s)
B (s)

]

,

for any p ∈ {1, . . . , k}, on the Skorokhod space D
Rp+k [0, 1]

where U and B are independent Brownian motions with variance
σj,j
∑∞

t=1 R−(n−t)−1��
u Q̃(ρ)Q̃(ρ)��uR−(n−t)−1 and �u, respectively.

Lemma 3. Under Assumptions 1 and 2, given the following data generating process
for i = 1, . . . , k as xi,t = μi + ρixi,t−1 + ui,t, ρi > 1, where μi = μ̃in−ηi with ηi ≥ 0. We
also have results (i)–(iv) in Lemma 2.

Lemma 4. Under Assumptions 1 and 2, given the following data generating process
for α ∈ (0, 1) , and ci > 0 for i = 1, . . . , k as xi,t = ρinxi,t−1 + ui,t, ρin = 1 + ci

nα , we have:

(i) For all i, j = 1, . . . , k, the following joint convergence applies:

(
1

nα/2

n∑

t=1

ρ−t
in

ui,t√
σj,j

,
1

nα/2

n∑

t=1

ρ
−(n−t)−1
in

uj,t√
σj,j

)

⇒
(√

σi,i

2ci
Yi (ci) ,

√
σj,j

2ci
Ỹj (ci)

)

,

© 2023 Oxford University and John Wiley & Sons Ltd.



Unrelated regression estimation for VAR models 23

where Yi (ci) ∼ N (0, 1) and Ỹj (ci) ∼ N (0, 1), and they are independent.
(ii)

1

n3α/2ρn
in

n∑

t=1

xi,t−1 ⇒ 1

ci

√
σi,i

2ci
Yi (ci) , (A5)

1

nαρn
in

n∑

t=1

xi,t−1uj,t ⇒
√

σi,iσj,j

2ci
Yi (ci) Ỹj (ci) , (A6)

1

n2αρ2n
in

n∑

t=1

x2
i,t−1 ⇒ σi,i

4c2
i

[Yi (ci)]2, (A7)

1

n2αρn
inρ

n
jn

n∑

t=1

xi,t−1xj,t−1 ⇒ 1

2
(
ci + cj

)

√
σi,iσj,j

cicj
Yi (ci) Yj

(
cj
)
. (A8)

(iii) Let Ỹ (ρ) = [ 1√
2c1

Ỹj(ρ1), . . . , 1√
2ck

Ỹj(ρk)]�. Consider the martingale array

Un (s) =
[

1
ρn

1n

∑n
t=1 x1,t−1uj,t, . . . , 1

ρn
kn

∑n
t=1 xk,t−1uj,t,

]
. Then the following joint

convergence applies:

[
Un (s)

1√
n

∑ns�
t=1 ut

]

⇒
[

U (s)
B (s)

]

, for any p ∈ {1, . . . , k}, on the

Skorokhod space D
Rp+k [0, 1] where U and B are independent Brownian motions

with variance σj,j
∫∞

0 e−sC��
u Ỹ (ρ)Ỹ (ρ)��ue−sCds and �u respectively.

Lemma 5. Under Assumptions 1 and 2, given the following data generating process
for α ∈ (0, 1) , and ci > 0 for i = 1, . . . , k as xi,t = μi + ρinxi,t−1 + ui,t, ρin = 1 + ci

nα ,
where μi = μ̃in−η with η ≥ 0, we also have results (i)-(iii) in Lemma 4.

Proof of Theorem 1

Proof . Let

�−1
u :=

⎡

⎢
⎣

σ 1,1 · · · σ 1,k

...
...

σ k,1 · · · σ k,k

⎤

⎥
⎦

k×k

and B :=

⎡

⎢
⎣

σ 1,1X �
1 X1 · · · σ 1,kX �

1 Xk
...

...

σ k,1X �
k X1 · · · σ k,kX �

k Xk

⎤

⎥
⎦

k×k

.

Hence, the SUR estimator of A can be rewritten as

ÂSUR = [X �(�u ⊗ In)
−1X ]−1[X �(�u ⊗ In)

−1X ] = 1

|B|B
∗

⎡

⎢
⎣

∑k
j=1σ

1,jX �
1 Xj

...
∑k

j=1σ
k,jX �

k Xj

⎤

⎥
⎦ .
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where B∗ denotes adjoint matrix of B. Further, the i-th term of ÂSUR is

ρ̂i,SUR = 1

|B| ×

∣
∣
∣
∣
∣
∣
∣

⎡

⎢
⎣

B1,1 · · · B1,i−1
∑k

j=1σ
1,jX �

1 Xj B1,i+1 · · · B1,k
...

...
...

...
...

Bk,1 · · · Bk,i−1
∑k

j=1σ
k,jX �

k Xj Bk,i+1 · · · Bk,k

⎤

⎥
⎦

∣
∣
∣
∣
∣
∣
∣

= ρi + 1

|B| ×
k∑

j=1

∣
∣
∣
∣
∣
∣
∣

⎡

⎢
⎣

B1,1 · · · σ 1,j∑n
t=1x1,t−1uj,t · · · B1,k

...
...

...

Bk,1 · · · σ kj∑n
t=1xk,t−1uj,t · · · Bk,k

⎤

⎥
⎦

∣
∣
∣
∣
∣
∣
∣
,

since ⎡

⎢
⎣

∑k
j=1σ

1,jX �
1 Xj

...
∑k

j=1σ
k,jX �

k Xj

⎤

⎥
⎦ =

k∑

j=1

ρj

⎡

⎢
⎣

B1,j
...

Bk,j

⎤

⎥
⎦+

⎡

⎢
⎣

∑k
j=1σ

1,j(
∑n

t=1x1,t−1uj,t)
...

∑k
j=1σ

k,j(
∑n

t=1xk,t−1uj,t)

⎤

⎥
⎦ .

Therefore, we have

ρ̂i,SUR − ρi = 1

|B| ×
k∑

j=1

∣
∣
∣
∣
∣
∣
∣

⎡

⎢
⎣

B1,1 · · · σ 1,j∑n
t=1x1,t−1uj,t · · · B1,k

...
...

...

Bk,1 · · · σ k,j∑n
t=1xk,t−1uj,t · · · Bk,k

⎤

⎥
⎦

∣
∣
∣
∣
∣
∣
∣
. (A9)

Using the result in Lemma 2, we obtain the following asymptotics:

1

ρn
i ρn

j
Bi,j = 1

ρn
i ρn

j
σ i,j

n∑

t=1

xi,t−1xj,t−1 ⇒
√

σi,iσj,j

ρiρj − 1
σ i,jQi (ρi) Qj

(
ρj
)
. (A10)

Therefore, |B|, the denominator of equation (A9), has the following asymptotics:

(
1

∏k
j=1 ρn

j

)2

|B| ⇒
⎛

⎝
k∏

j=1

σj,jQj(ρj)
2

⎞

⎠ ξ0(ρ), (A11)

where

ξ0(ρ) :=

∣
∣
∣
∣
∣
∣
∣
∣
∣

⎡

⎢
⎢
⎢
⎣

σ 1,1

ρ2
1−1

· · · σ 1,k

ρ1ρk−1

...
...

σ k,1

ρkρ1−1 · · · σ k,k

ρ2
k −1

⎤

⎥
⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣
∣

. (A12)

Further, using the limiting result from Lemma 2 such that 1
ρn

i
σ i,j∑n

t=1 xi,t−1uj,t−1 ⇒
σ i,j√σi,iσj,jQi(ρi)Q̃j(ρi), the jth summand in numerator of equation (A9) has the following
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asymptotics:

(
1

∏
��=iρ

n
�

)2
1

ρn
i

∣
∣
∣
∣
∣
∣
∣

⎡

⎢
⎣

B1,1 · · · σ 1,p∑n
t=1x1,t−1uj,t · · · B1,k

...
...

...

Bk,1 · · · σ k,p∑n
t=1xk,t−1uj,t · · · Bk,k

⎤

⎥
⎦

∣
∣
∣
∣
∣
∣
∣

⇒
(

k∏

�=1

σ�,�x�(ρ�)
2

)√
σj,j

σi,i

1

Qi(ρi)

∣
∣
∣
∣
∣
∣
∣
∣
∣

⎡

⎢
⎢
⎢
⎣

σ 1,1

ρ2
1−1

· · · σ 1,j̃xj(ρ1) · · · σ 1,k

ρ1ρk−1

...
...

...
σ k,1

ρkρ1−1 · · · σ k,j̃xj(ρk) · · · σ k,k

ρ2
k −1

⎤

⎥
⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣
∣

.

(A13)

Combine the result from equations (A11) and (A13), we obtain ρn
i (ρ̂i,SUR − ρi) ⇒

ξi(ρ)

ξ0(ρ)
, where

ξi(ρ) :=
k∑

j=1

√
σj,j

σi,i

1

Qi(ρi)

∣
∣
∣
∣
∣
∣
∣
∣
∣

⎡

⎢
⎢
⎢
⎣

σ 1,1

ρ2
1−1

· · · σ 1,jQ̃j(ρ1) · · · σ 1,k

ρ1ρk−1

...
...

...
σ k,1

ρkρ1−1 · · · σ k,jQ̃j(ρk) · · · σ k,k

ρ2
k −1

⎤

⎥
⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣
∣

. (A14)

This completes the proof of Theorem 1. �

Proof of Theorem 2

Proof . The proof is analogous to the proof of Theorem 1. The detailed proof is
provided in the Data S1. �

Final Manuscript Received: May 2022
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